5-1. Determine the tension in each segment of the cable and the cable's total length.

Equations of Equilibrium: Applying method of joints, we have

Joint B:

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & F_{B C} \cos \theta-F_{B A}\left(\frac{4}{\sqrt{65}}\right)=0 \\
+\uparrow \sum F_{y}=0 ; & F_{B A}\left(\frac{7}{\sqrt{65}}\right)-F_{B C} \sin \theta-50=0
\end{array}
$$

Joint C :

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; & F_{C D} \cos \phi-F_{B C} \cos \theta=0 \\
+\uparrow \sum F_{y}=0 ; & F_{B C} \sin \theta+F_{C D} \sin \phi-100=0
\end{array}
$$

Geometry:

$$
\begin{array}{ll}
\sin \theta=\frac{y}{\sqrt{y^{2}+25}} & \cos \theta=\frac{5}{\sqrt{y^{2}+25}} \\
\sin \phi=\frac{3+y}{\sqrt{y^{2}+6 y+18}} & \cos \phi=\frac{3}{\sqrt{y^{2}+6 y+18}}
\end{array}
$$

Substitute the above results into Eqs. [1], [2], [3] and [4] and solve. We have

$$
\begin{aligned}
& F_{B C}=46.7 \mathrm{lb} \quad F_{B A}=83.0 \mathrm{lb} \quad F_{C D}=88.1 \mathrm{lb} \\
& y=2.679 \mathrm{ft}
\end{aligned}
$$

The total length of the cable is

$$
\begin{aligned}
l & =\sqrt{7^{2}+4^{2}}+\sqrt{5^{2}+2.679^{2}}+\sqrt{3^{2}+(2.679+3)^{2}} \\
& =20.2 \mathrm{ft}
\end{aligned}
$$

[4]

Ans.

5-2. Cable $A B C D$ supports the loading shown. Determine the maximum tension in the cable and the sag of point B.

Referring to the FBD in Fig. a,

$$
\begin{gathered}
C+\sum M_{A}=0 ; \quad T_{C D}\left(\frac{4}{\sqrt{17}}\right)(4)+T_{C D}\left(\frac{1}{\sqrt{17}}\right)(2)-6(4)-4(1)=0 \\
T_{C D}=6.414 \mathrm{kN}=6.41 \mathrm{kN}(\mathrm{Max})
\end{gathered}
$$

Joint C : Referring to the FBD in Fig. b,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 6.414\left(\frac{1}{\sqrt{17}}\right)-T_{B C} \cos \theta=0
$$

$$
+\uparrow \sum F_{y}=0 ; \quad 6.414\left(\frac{4}{\sqrt{17}}\right)-6-T_{B C} \sin \theta=0
$$

Solving,

$$
\begin{aligned}
& T_{B C}=1.571 \mathrm{kN}=1.57 \mathrm{kN} \quad\left(<T_{C D}\right) \\
& \theta=8.130^{\circ}
\end{aligned}
$$

Joint B: Referring to the FBD in Fig. c,
$\xrightarrow{+} \sum F_{x}=0 ; \quad 1.571 \cos 8.130^{\circ}-T_{A B} \cos \phi=0$
$+\uparrow \sum F_{y}=0 ; \quad T_{A B} \sin \phi+1.571 \sin 8.130^{\circ}-4=0$

Solving,

$$
\begin{aligned}
& T_{A B}=4.086 \mathrm{kN}=4.09 \mathrm{kN} \quad\left(<T_{C D}\right) \\
& \phi=67.62^{\circ}
\end{aligned}
$$

Then, from the geometry,

$$
\begin{aligned}
\frac{y_{B}}{1}=\tan \phi ; \quad y_{B} & =1 \tan 67.62^{\circ} \\
& =2.429 \mathrm{~m}=2.43 \mathrm{~m}
\end{aligned}
$$

(b)

Ans.

Ans.

5-3. Determine the tension in each cable segment and the distance y_{D}.

Joint B: Referring to the FBD in Fig. a,
$\xrightarrow{+} \sum F_{x}=0 ; \quad T_{B C}\left(\frac{5}{\sqrt{29}}\right)-T_{A B}\left(\frac{4}{\sqrt{65}}\right)=0$
$+\uparrow \sum F_{y}=0 ; \quad T_{A B}\left(\frac{7}{\sqrt{65}}\right)-T_{B C}\left(\frac{2}{\sqrt{29}}\right)-2=0$
Solving,

$$
T_{A B}=2.986 \mathrm{kN}=2.99 \mathrm{kN} \quad T_{B C}=1.596 \mathrm{kN}=1.60 \mathrm{kN}
$$

Joint C : Referring to the FBD in Fig. b,

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & \\
T_{C D} \cos \theta-1.596\left(\frac{5}{\sqrt{29}}\right)=0 \\
+\uparrow \sum F_{y}=0 ; & \\
T_{C D} \sin \theta+1.596\left(\frac{2}{\sqrt{29}}\right)-4=0
\end{array}
$$

Solving,

$$
\begin{aligned}
& T_{C D}=3.716 \mathrm{kN}=3.72 \mathrm{kN} \\
& \theta=66.50^{\circ}
\end{aligned}
$$

From the geometry,

$$
\begin{aligned}
& y_{D}+3 \tan \theta=9 \\
& y_{D}=9-3 \tan 66.50^{\circ}=2.10 \mathrm{~m}
\end{aligned}
$$

Ans.

(a)

(b)
*5-4. The cable supports the loading shown. Determine the distance x_{B} the force at point B acts from A. Set $P=40 \mathrm{lb}$.

At B

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & 40-\frac{x_{B}}{\sqrt{x_{B}^{2}+25}} T_{A B}-\frac{x_{B}-3}{\sqrt{\left(x_{B}-3\right)^{2}+64}} T_{B C}=0 \\
+\uparrow \sum F_{y}=0 ; & \frac{5}{\sqrt{x_{B}^{2}+25}} T_{A B}-\frac{8}{\sqrt{\left(x_{B}-3\right)^{2}+64}} T_{B C}=0 \\
& \frac{13 x_{B}-15}{\sqrt{\left(x_{B}-3\right)^{2}+64}} T_{B C}=200
\end{array}
$$

At C

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & \frac{4}{5}(30)+\frac{x_{B}-3}{\sqrt{\left(x_{B}-3\right)^{2}+64}} T_{B C}-\frac{3}{\sqrt{13}} T_{C D}=0 \\
+\uparrow \sum F_{y}=0 ; & \frac{8}{\sqrt{\left(x_{B}-3\right)^{2}+64}} T_{B C}+\frac{2}{\sqrt{13}} T_{C D}-\frac{3}{5}(30)=0 \\
& \frac{30-2 x_{B}}{\sqrt{\left(x_{B}-3\right)^{2}+64}} T_{B C}=102
\end{array}
$$

Solving Eqs. (1) \& (2)

$$
\frac{13 x_{B}-15}{30-2 x_{B}}=\frac{200}{102}
$$

$$
x_{B}=4.36 \mathrm{ft}
$$

(1)

Ans.

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & \frac{4}{5}(30)+\frac{3}{\sqrt{73}} T_{B C}-\frac{3}{\sqrt{13}} T_{C D}=0 \\
+\uparrow \sum F_{y}=0 ; & \frac{8}{\sqrt{73}} T_{B C}-\frac{2}{\sqrt{13}} T_{C D}-\frac{3}{5}(30)=0 \\
& \frac{18}{\sqrt{73}} T_{B C}=102 \tag{2}
\end{array}
$$

Solving Eqs. (1) \& (2)

$$
\begin{aligned}
& \frac{63}{18}=\frac{5 P}{102} \\
& P=71.4 \mathrm{lb}
\end{aligned}
$$

Ans.

5-6. Determine the forces P_{1} and P_{2} needed to hold the cable in the position shown, i.e., so segment $C D$ remains horizontal. Also find the maximum loading in the cable.

Method of Joints:

Joint B:

$\xrightarrow{+} \sum F_{x}=0 ;$
$F_{B C}\left(\frac{4}{\sqrt{17}}\right)-F_{A B}\left(\frac{2}{2.5}\right)=0$
$+\uparrow \sum F_{y}=0 ; \quad F_{A B}\left(\frac{1.5}{2.5}\right)-F_{B C}\left(\frac{1}{\sqrt{17}}\right)-5=0$
Solving Eqs. [1] and [2] yields

$$
F_{B C}=10.31 \mathrm{kN} \quad F_{A B}=12.5 \mathrm{kN}
$$

Joint C :

$$
\begin{array}{ll}
\xrightarrow{+} \sum F_{x}=0 ; & F_{C D}-10.31\left(\frac{4}{\sqrt{17}}\right)=0 \quad F_{C D}=10.00 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & 10.31\left(\frac{1}{\sqrt{17}}\right)-P_{1}=0 \quad P_{1}=2.50 \mathrm{kN}
\end{array}
$$

Joint \boldsymbol{D} :

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; & F_{D E}\left(\frac{4}{\sqrt{22.25}}\right)-10=0 \\
+\uparrow \sum F_{y}=0 ; & F_{D E}\left(\frac{25}{\sqrt{22.25}}\right)-P_{2}=0 \tag{2}
\end{array}
$$

Solving Eqs. [1] and [2] yields

$$
P_{2}=6.25 \mathrm{kN}
$$

$F_{D E}=11.79 \mathrm{kN}$
Thus, the maximum tension in the cable is

$$
F_{\max }=F_{A B}=12.5 \mathrm{kN}
$$

Ans.

Ans.

Ans.

5-7. The cable is subjected to the uniform loading. If the slope of the cable at point O is zero, determine the equation of the curve and the force in the cable at O and B.

From Eq. 5-9.

Ans.
From Eq. 5-8
$T_{o}=F_{H}=\frac{w_{o} L^{2}}{2 h}=\frac{500(15)^{2}}{2(8)}=7031.25 \mathrm{lb}=7.03 \mathrm{k}$
Ans.

From Eq. 5-10.
$T_{B}=T_{\max }=\sqrt{\left(F_{H}\right)^{2}+\left(w_{o} L\right)^{2}}=\sqrt{(7031.25)^{2}+[(500)(15)]^{2}}$

$$
=10280.5 \mathrm{lb}=10.3 \mathrm{k}
$$

Ans.

Also, from Eq. 5-11
$T_{B}=T_{\max }=w_{o} L \sqrt{1+\left(\frac{L}{2 h}\right)^{2}}=500(15) \sqrt{1+\left(\frac{15}{2(8)}\right)^{2}}=10280.5 \mathrm{lb}=10.3 \mathrm{k}$
Ans.
*5-8. The cable supports the uniform load of $w_{0}=600 \mathrm{lb} / \mathrm{ft}$.
Determine the tension in the cable at each support A and B.

$$
\begin{aligned}
& y=\frac{w_{o}}{2 F_{H}} x^{2} \\
& 15=\frac{600}{2 F_{H}} x^{2} \\
& 10=\frac{600}{2 F_{H}}(25-x)^{2} \\
& \frac{600}{2(15)} x^{3}=\frac{600}{2(10)}(25-x)^{2} \\
& x^{2}=1.5\left(625-50 x+x^{2}\right) \\
& 0.5 x^{2}-75 x+937.50=0
\end{aligned}
$$

Choose root $<25 \mathrm{ft}$

$$
x=13.76 \mathrm{ft}
$$

$F_{H}=\frac{w_{o}}{2 y} x^{2}=\frac{600}{2(15)}(13.76)^{2}=3788 \mathrm{lb}$

5-8. Continued

At B :

$$
\begin{aligned}
& y=\frac{w_{o}}{2 F_{H}} x^{2}=\frac{600}{2(3788)} x^{2} \\
& \frac{d y}{d x}=\tan \theta_{B}=\left.0.15838 x\right|_{x=13.76}=2.180 \\
& \theta_{B}=65.36^{\circ} \\
& T_{B}=\frac{F_{H}}{\cos \theta_{B}}=\frac{3788}{\cos 65.36^{\circ}}=9085 \mathrm{lb}=9.09 \mathrm{kip}
\end{aligned}
$$

Ans.

At A :

$$
\begin{aligned}
& y=\frac{w_{o}}{2 F_{H}} x^{2}=\frac{600}{2(3788)} x^{2} \\
& \frac{d y}{d x}=\tan \theta_{A}=\left.0.15838 x\right|_{x=(25-13.76)}=1.780 \\
& \theta_{A=60.67^{\circ}} \\
& T_{A}=\frac{F_{H}}{\cos \theta_{A}}=\frac{3788}{\cos 60.67^{\circ}}=7734 \mathrm{lb}=7.73 \mathrm{kip}
\end{aligned}
$$

Ans.

5-9. Determine the maximum and minimum tension in the cable.

The minimum tension in the cable occurs when $\theta=0^{\circ}$. Thus, $T_{\text {min }}=F_{H}$. With $w_{o}=16 \mathrm{kN} / \mathrm{m}, L=10 \mathrm{~m}$ and $h=2 \mathrm{~m}$,

$$
T_{\min }=F_{H}=\frac{w_{o} L^{2}}{2 h}=\frac{(16 \mathrm{kN} / \mathrm{m})(10 \mathrm{~m})^{2}}{2(2 \mathrm{~m})}=400 \mathrm{kN}
$$

And

$$
\begin{aligned}
T_{\max } & =\sqrt{F_{H^{2}}+\left(w_{o} L\right)^{2}} \\
& =\sqrt{400^{2}+[16(10)]^{2}} \\
& =430.81 \mathrm{kN} \\
& =431 \mathrm{kN}
\end{aligned}
$$

Ans.

Ans.

5-10. Determine the maximum uniform loading w, measured in $\mathrm{lb} / \mathrm{ft}$, that the cable can support if it is capable of sustaining a maximum tension of 3000 lb before it will break.

$$
y=\frac{1}{F_{H}} \int\left(\int w d x\right) d x
$$

At $x=0, \quad \frac{d y}{d x}=0$
At $x=0, \quad y=0$

$$
C_{1}=C_{2}=0
$$

$$
y=\frac{w}{2 F_{H}} x^{2}
$$

At $x=25 \mathrm{ft}, \quad y=6 \mathrm{ft} \quad F_{H}=52.08 w$

$$
\left.\frac{d y}{d x}\right|_{\max }=\tan \theta_{\max }=\left.\frac{w}{F_{H}} x\right|_{x=25 \mathrm{ft}}
$$

$$
\theta_{\max }=\tan ^{-1}(0.48)=25.64^{\circ}
$$

$$
T_{\max }=\frac{F_{H}}{\cos \theta_{\max }}=3000
$$

$F_{H}=2705 \mathrm{lb}$
$w=51.9 \mathrm{lb} / \mathrm{ft}$

Ans.

5-11. The cable is subjected to a uniform loading of $w=250 \mathrm{lb} / \mathrm{ft}$. Determine the maximum and minimum tension in the cable.

$$
\begin{aligned}
& F_{H}=\frac{w_{o} L^{2}}{8 h}=\frac{250(50)^{2}}{8(6)}=13021 \mathrm{lb} \\
& \theta_{\max }=\tan ^{-1}\left(\frac{w_{o} L}{2 F_{H}}\right)=\tan ^{-1}\left(\frac{250(50)}{2(13021)}\right)=25.64^{\circ} \\
& T_{\max }=\frac{F_{H}}{\cos _{\theta_{\max }}}=\frac{13021}{\cos 25.64^{\circ}}=14.4 \mathrm{kip}
\end{aligned}
$$

Ans.
The minimum tension occurs at $\theta=0^{\circ}$

$$
T_{\min }=F_{H}=13.0 \mathrm{kip}
$$

*5-12. The cable shown is subjected to the uniform load w_{0}. Determine the ratio between the rise h and the span L that will result in using the minimum amount of material for the cable.

From Eq. 5-9,

$$
\begin{aligned}
& y=\frac{h}{\left(\frac{L}{2}\right)^{2}} x^{2}=\frac{4 h}{L^{2}} x^{2} \\
& \frac{d y}{d x}=\frac{8 h}{L^{2}} x
\end{aligned}
$$

From Eq. 5-8,

$$
F_{H}=\frac{w_{o}\left(\frac{L}{2}\right)^{2}}{2 h}=\frac{w_{o} L^{2}}{8 h}
$$

Since $\quad F_{H}=T\left(\frac{d x}{d s}\right), \quad$ then

$$
T=\frac{w_{o} L^{2}}{8 h}\left(\frac{d s}{d x}\right)
$$

Let $\sigma_{\text {allow }}$ be the allowable normal stress for the cable. Then
$\frac{T}{A}=\sigma_{\text {allow }}$

$$
\begin{aligned}
& \frac{T}{\sigma_{\text {allow }}}=A \\
& d V=A d s \\
& d V=\frac{T}{\sigma_{\text {allow }}} d s
\end{aligned}
$$

The volume of material is

$$
\begin{aligned}
V & =\frac{2}{\sigma_{\text {allow }}} \int_{0}^{\frac{1}{2}} T d s=\frac{2}{\sigma_{\text {allow }}} \int_{0}^{\frac{1}{2}} \frac{w_{o} L^{2}}{8 h}\left[\frac{(d s)^{2}}{d x}\right] \\
\frac{d s^{2}}{d x} & =\frac{d x^{2}+d y^{2}}{d x}=\left[\frac{d x^{2}+d y^{2}}{d x^{2}}\right] d x=\left[1+\left(\frac{d y}{d x}\right)^{2}\right] d x \\
& =\int_{0}^{\frac{1}{2}} \frac{w_{o} L^{2}}{4 h \sigma_{\text {allow }}}\left[1+\left(\frac{d y}{d x}\right)^{2}\right] d x \\
& =\frac{w_{o} L^{2}}{4 h \sigma_{\text {allow }}} \int_{0}^{\frac{1}{2}}\left[1+64\left(\frac{h^{2} x^{2}}{L^{4}}\right)\right] d x \\
& =\frac{w_{o} L^{2}}{4 h \sigma_{\text {allow }}}\left[\frac{L}{2}+\frac{8 h^{2}}{3 L}\right]=\frac{w_{o} L^{2}}{8 \sigma_{\text {allow }}}\left[\frac{L}{h}+\frac{16}{3}\left(\frac{h}{L}\right)\right]
\end{aligned}
$$

Require,

$$
\frac{d V}{d h}=\frac{w_{o} L^{2}}{8 \sigma_{\text {allow }}}\left[-\frac{L}{h^{2}}+\frac{16}{3 L}\right]=0
$$

$$
h=0.433 L
$$

5-13. The trusses are pin connected and suspended from the parabolic cable. Determine the maximum force in the cable when the structure is subjected to the loading shown.

Entire structure:

$\varsigma+\sum M_{C}=0 ; \quad 4(36)+5(72)+F_{H}(36)-F_{H}(36)-\left(A_{y}+D_{y}(96)=0\right.$

$$
\begin{equation*}
\left(A_{y}+D_{y}\right)=5.25 \tag{1}
\end{equation*}
$$

Section ABD:

$\varsigma+\sum M_{B}=0 ; \quad F_{H}(14)-\left(A_{y}+D_{y}\right)(48)+5(24)=0$
Using Eq. (1):

$$
F_{H}=9.42857 \mathrm{k}
$$

From Eq. 5-8:
$w_{o}=\frac{2 F_{H} h}{L^{2}}=\frac{2(9.42857)(14)}{48^{2}}=0.11458 \mathrm{k} / \mathrm{ft}$
From Eq. 5-11:
$T_{\max }=w_{o} L \sqrt{1+\left(\frac{L}{2 h}\right)^{2}}=0.11458(48) \sqrt{1+\left[\frac{48}{2(14)}\right]^{2}}=10.9 \mathrm{k}$
Ans.

5-14. Determine the maximum and minimum tension in the parabolic cable and the force in each of the hangers. The girder is subjected to the uniform load and is pin connected at B.

Member $B C$:

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}=0
$$

Member $\boldsymbol{A B}$:

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0
$$

FBD 1:

$$
\zeta+\sum M_{A}=0 ; \quad F_{H}(1)-B_{y}(10)-20(5)=0
$$

5-14. Continued

FBD 2:
$\zeta+\sum M_{C}=0 ; \quad-F_{H}(9)-B_{y}(30)+60(15)=0$

Solving,

$$
B_{y}=0, \quad F_{H}=F_{\min }=100 \mathrm{k}
$$

Max cable force occurs at E , where slope is the maximum.
From Eq. 5-8.
$W_{o}=\frac{2 F_{H} h}{L^{2}}=\frac{2(100)(9)}{30^{2}}=2 \mathrm{k} / \mathrm{ft}$
$F_{\max }=w_{o} L \sqrt{1+\left(\frac{L}{2 h}\right)^{2}}=2(30) \sqrt{1+\left(\frac{30}{2(9)}\right)^{2}}$
$F_{\max }=117 \mathrm{k}$
Each hanger carries 5 ft of w_{o}.
$T=(2 \mathrm{k} / \mathrm{ft})(5 \mathrm{ft})=10 \mathrm{k}$

5-15. Draw the shear and moment diagrams for the pinconnected girders $A B$ and $B C$. The cable has a parabolic shape.

$$
\begin{aligned}
C+\sum M_{A}=0 ; & T(5)+T(10)+T(15)+T(20)+T(25) \\
& +T(30)+T(35)+C_{y}(40)-80(20)=0
\end{aligned}
$$

Set $T=10 \mathrm{k}$ (See solution to Prob. 5-14)

$$
C_{y}=5 \mathrm{k}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad 7(10)+5-80+A_{y}=0
$$

$$
A_{y}=5 \mathrm{k}
$$

$$
M_{\max }=6.25 \mathrm{k} \cdot \mathrm{ft}
$$

Ans.

6.25

*5-16. The cable will break when the maximum tension reaches $T_{\text {max }}=5000 \mathrm{kN}$. Determine the maximum uniform distributed load w required to develop this maximum tension.

With $T_{\text {max }}=80\left(10^{3}\right) \mathrm{kN}, L=50 \mathrm{~m}$ and $h=12 \mathrm{~m}$,

$$
\begin{aligned}
& T_{\max }=w_{o} L \sqrt{1+\left(\frac{L}{2 h}\right)^{2}} \\
& 8000=w_{o}(50)\left[\sqrt{1+\left(\frac{50}{24}\right)^{2}}\right] \\
& \quad w_{o}=69.24 \mathrm{kN} / \mathrm{m}=69.2 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Ans.

5-17. The cable is subjected to a uniform loading of $w=60 \mathrm{kN} / \mathrm{m}$. Determine the maximum and minimum tension in cable.

The minimum tension in cable occurs when $\theta=0^{\circ}$. Thus, $T_{\min }=F_{H}$.

$$
\begin{aligned}
T_{\min }=F_{H}=\frac{w_{o} L^{2}}{2 h}=\frac{(60 \mathrm{kN} / \mathrm{m})(50 \mathrm{~m})^{2}}{2(12 \mathrm{~m})} & =6250 \mathrm{kN} \\
& =6.25 \mathrm{MN}
\end{aligned}
$$

Ans.
And,

$$
\begin{aligned}
T_{\max } & =\sqrt{F_{H}^{2}+\left(w_{o} L\right)^{2}} \\
& =\sqrt{6250^{2}+[60(50)]^{2}} \\
& =6932.71 \mathrm{kN} \\
& =6.93 \mathrm{MN}
\end{aligned}
$$

Ans.

5-18. The cable $A B$ is subjected to a uniform loading of $200 \mathrm{~N} / \mathrm{m}$. If the weight of the cable is neglected and the slope angles at points A and B are 30° and 60°, respectively, determine the curve that defines the cable shape and the maximum tension developed in the cable.

Here the boundary conditions are different from those in the text.
Integrate Eq. 5-2,
$T \sin \theta=200 x+C_{1}$
Divide by by Eq. 5-4, and use Eq. 5-3
$\frac{d y}{d x}=\frac{1}{F_{H}}\left(200 x+C_{1}\right)$
$y=\frac{1}{F_{H}}\left(100 x^{2}+C_{1} x+C_{2}\right)$

At $x=0, \quad y=0 ; \quad C_{2}=0$
At $x=0, \quad \frac{d y}{d x}=\tan 30^{\circ} ; \quad C_{1}=F_{H} \tan 30^{\circ}$
$y=\frac{1}{F_{H}}\left(100 x^{2}+F_{H} \tan 30^{\circ} x\right)$
$\frac{d y}{d x}=\frac{1}{F_{H}}\left(200 x+F_{H} \tan 30^{\circ}\right)$
At $x=15 \mathrm{~m}, \quad \frac{d y}{d x}=\tan 60^{\circ} ; \quad F_{H}=2598 \mathrm{~N}$
$y=\left(38.5 x^{2}+577 x\right)\left(10^{-3}\right) m$
$\theta_{\text {max }}=60^{\circ}$
$T_{\max }=\frac{F_{H}}{\cos \theta_{\max }}=\frac{2598}{\cos 60^{\circ}}=5196 \mathrm{~N}$
$T_{\text {max }}=5.20 \mathrm{kN}$

Ans.

Ans.

5-19. The beams $A B$ and $B C$ are supported by the cable that has a parabolic shape. Determine the tension in the cable at points D, F, and E, and the force in each of the equally spaced hangers.
$\xrightarrow{+} \sum F_{x}=0 ;$

$$
B_{x}=0 \quad(\text { Member } B C)
$$

$\varsigma+\sum M_{A}=0 ; \quad F_{F}(12)-F_{F}(9)-B_{y}(8)-3(4)=0$

$$
3 F_{F}-B_{y}(8)=12
$$

$\xrightarrow{+} \sum F_{x}=0 ;$
$A_{x}=0 \quad($ Member $A B)$
$\varsigma+\sum M_{C}=0 ; \quad-F_{F}(12)+F_{F}(9)-B_{y}(8)+5(6)=0$

$$
-3 F_{F}-B_{y}(8)=-30
$$

Soving Eqs. (1) and (2),

$$
B_{y}=1.125 \mathrm{kN}, \quad F_{F}=7.0 \mathrm{kN}
$$

From Eq. 5-8.
$w_{o}=\frac{2 F_{H} h}{L^{2}}=\frac{2(7)(3)}{8^{2}}=0.65625 \mathrm{kN} / \mathrm{m}$
From Eq. 5-11,
$T_{\max }=w_{o} L \sqrt{1+\left(\frac{L}{2 h}\right)^{2}}=0.65625(8) \sqrt{1+\left(\frac{8}{2(3)}\right)^{2}}$
$T_{\max }=T_{E}=T_{D}=8.75 \mathrm{kN}$
Load on each hanger,
$T=0.65625(2)=1.3125 \mathrm{kN}=1.31 \mathrm{kN}$

Ans.

Ans.

*5-20. Draw the shear and moment diagrams for beams $A B$ and $B C$. The cable has a parabolic shape.

$\zeta+\sum M_{A}=0 ;$

$$
\begin{aligned}
& T(2)+T(4)+T(6)+T(8)+T(10) \\
& +T(12)+T(14)+C_{y}(16)-3(4)-5(10)=0
\end{aligned}
$$

Set $T=1.3125 \mathrm{kN}$ (See solution to Prob 5-19).

$$
\begin{array}{ll}
& C_{y}=-0.71875 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & 7(1.3125)-8-0.71875+A_{y}=0 \\
& A_{y}=-0.46875 \mathrm{kN} \\
& M_{\max }=3056 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

$$
\left.\right|_{i(1.4)} ^{0.150} 1
$$

5-21. The tied three-hinged arch is subjected to the loading shown. Determine the components of reaction at A and C and the tension in the cable.

Entire arch:

$$
\begin{array}{ll}
\xrightarrow{+} \sum F_{x}=0 ; & A_{x}=0 \\
\varsigma+\sum M_{A}=0 ; & C_{y}(5.5)-15(0.5)-10(4.5)=0 \\
& C_{y}=9.545 \mathrm{kN}=9.55 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & 9.545-15-10+A_{y}=0 \\
& A_{y}=15.45 \mathrm{kN}=15.5 \mathrm{kN}
\end{array}
$$

Section AB:

$$
\begin{array}{ll}
\varsigma+\sum M_{B}=0 ; & -15.45(2.5)+T(2)+15(2)=0 \\
& T=4.32 \mathrm{kN}
\end{array}
$$

Ans.

Ans.

Ans.

5-22. Determine the resultant forces at the pins A, B, and C of the three-hinged arched roof truss.

Member $\boldsymbol{A B}$:

$$
\zeta+\sum M_{A}=0 ; \quad B_{x}(5)+B_{y}(8)-2(3)-3(4)-4(5)=0
$$

Member $\boldsymbol{B C}$:

$$
C+\sum M_{C}=0 ; \quad-B_{x}(5)+B_{y}(7)+5(2)+4(5)=0
$$

Soving,

$$
B_{y}=0.533 \mathrm{k}, \quad B_{x}=6.7467 \mathrm{k}
$$

Member $\boldsymbol{A B}$:

$$
\begin{array}{ll}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; & A_{x}=6.7467 \mathrm{k} \\
+\uparrow \sum F_{y}=0 ; & A_{y}-9+0.533=0 \\
& A_{y}=8.467 \mathrm{k}
\end{array}
$$

Member BC:

$$
\begin{array}{ll}
\xrightarrow{+} \sum F_{x}=0 ; & C_{x}=6.7467 \mathrm{k} \\
+\uparrow \sum F_{y}=0 ; & C_{y}-9+0.533=0 \\
C_{y}=9.533 \mathrm{k} \\
& F_{B}=\sqrt{(0.533)^{2}+(6.7467)^{2}}=6.77 \mathrm{k} \\
& F_{A}=\sqrt{(6.7467)^{2}+(8.467)^{2}}=10.8 \mathrm{k} \\
& F_{C}=\sqrt{(6.7467)^{2}+(9.533)^{2}}=11.7 \mathrm{k}
\end{array}
$$

Ans.
Ans.
Ans.

5-23. The three-hinged spandrel arch is subjected to the loading shown. Determine the internal moment in the arch at point D.

Member $\boldsymbol{A B}$:

$$
\begin{aligned}
\zeta+\sum M_{A}=0 ; & B_{x}(5)+B_{y}(8)-8(2)-8(4)-4(6)=0 \\
& B_{x}+1.6 B_{y}=14.4
\end{aligned}
$$

Member CB:

$$
\begin{aligned}
\varsigma+\sum M_{C}=0 ; & B_{(y)}(8)-B_{x}(5)+6(2)+6(4)+3(6)=0 \\
& -B_{x}+1.6 B_{y}=-10.8
\end{aligned}
$$

Soving Eqs. (1) and (2) yields:

$$
\begin{aligned}
B_{y} & =1.125 \mathrm{kN} \\
B_{x} & =12.6 \mathrm{kN}
\end{aligned}
$$

Segment BD:

$$
\begin{array}{cl}
\varsigma+\sum M_{D}=0 ; & -M_{D}+12.6(2)+1.125(5)-8(1)-4(3)=0 \\
& M_{D}=10.825 \mathrm{kN} \cdot \mathrm{~m}=10.8 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

*5-24. The tied three-hinged arch is subjected to the loading shown. Determine the components of reaction at A and C, and the tension in the rod

Entire arch:

$\varsigma+\sum M_{A}=0 ; \quad-4(6)-3(12)-5(30)+C_{y}(40)=0$

$$
C_{y}=5.25 \mathrm{k}
$$

$+\uparrow \sum F_{y}=0 ; \quad A_{y}+5.25-4-3-5=0$
$A_{y}=6.75 \mathrm{k}$
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0$

Section BC:

$\zeta+\sum M_{B}=0 ;$
$-5(10)-T(15)+5.25(20)=0$
$T=3.67 \mathrm{k}$

Ans.

Ans.

5-25. The bridge is constructed as a three-hinged trussed arch. Determine the horizontal and vertical components of reaction at the hinges (pins) at A, B, and C. The dashed member $D E$ is intended to carry no force.

Member $A B$:

$$
\begin{aligned}
\zeta+\sum M_{A}=0 ; \quad & B_{x}(90)+B_{y}(120)-20(90)-20(90)-60(30)=0 \\
& 9 B_{x}+12 B_{y}=480
\end{aligned}
$$

Member BC:

$$
\begin{aligned}
\varsigma+\sum M_{C}=0 ; \quad & -B_{x}(90)+B_{y}(120)+40(30)+40(60)=0 \\
& -9 B_{x}+12 B_{y}=-360
\end{aligned}
$$

Soving Eqs. (1) and (2) yields:

$$
B_{x}=46.67 \mathrm{k}=46.7 \mathrm{k} \quad B_{y}=5.00 \mathrm{k}
$$

5-25. Continued

Member $\boldsymbol{A B}$:

$\xrightarrow{+} \sum F_{x}=0 ;$

$$
A_{x}-46.67=0
$$

$$
A_{x}=46.7 \mathrm{k}
$$

$+\uparrow \sum F_{y}=0 ;$
$A_{y}-60-20-20+5.00=0$

$$
A_{y}=95.0 \mathrm{k}
$$

Member $\boldsymbol{B C}$:

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & -C_{x}+46.67=0 \\
+\uparrow \sum F_{y}=0 ; & C_{x}=46.7 \mathrm{k} \\
& C_{y}-5.00-40-40=0 \\
& C_{y}=85 \mathrm{k}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

5-26. Determine the design heights h_{1}, h_{2}, and h_{3} of the bottom cord of the truss so the three-hinged trussed arch responds as a funicular arch.
$y=-C x^{2}$
$-100=-C(120)^{2}$
$C=0.0069444$
Thus,
$y=-0.0069444 x^{2}$
$y_{1}=-0.0069444(90 \mathrm{ft})^{2}=-56.25 \mathrm{ft}$
$y_{2}=-0.0069444(60 \mathrm{ft})^{2}=-25.00 \mathrm{ft}$
$y_{3}=-0.0069444(30 \mathrm{ft})^{2}=-6.25 \mathrm{ft}$
$h_{1}=100 \mathrm{ft}-56.25 \mathrm{ft}=43.75 \mathrm{ft}$
$h_{2}=100 \mathrm{ft}-25.00 \mathrm{ft}=75.00 \mathrm{ft}$
$h_{3}=100 \mathrm{ft}-6.25 \mathrm{ft}=93.75 \mathrm{ft}$

Ans.
Ans.
Ans.

5-27. Determine the horizontal and vertical components of reaction at A, B, and C of the three-hinged arch. Assume A, B, and C are pin connected.

Member $\boldsymbol{A B}$:

$$
\varsigma+\sum M_{A}=0 ; \quad B_{x}(5)+B_{y}(11)-4(4)=0
$$

Member $\boldsymbol{B C}$:

$\varsigma+\sum M_{C}=0 ; \quad-B_{x}(10)+B_{y}(15)+3(8)=0$
Soving,

$$
B_{y}=0.216 \mathrm{k}, \quad B_{x}=2.72 \mathrm{k}
$$

Member $A B$:

$\xrightarrow{+} \sum F_{x}=0 ;$

$$
A_{x}-2.7243=0
$$

$$
A_{x}=2.72 \mathrm{k}
$$

$+\uparrow \sum F_{y}=0 ;$
$A_{y}-4+0.216216=0$

$$
A_{y}=3.78 \mathrm{k}
$$

Member $\boldsymbol{B C}$:

$$
\begin{array}{ll}
+\sum F_{x}=0 ; & C_{x}+2.7243-3=0 \\
+\uparrow \sum F_{y}=0 ; & C_{x}=0.276 \mathrm{k} \\
& C_{y}-0.216216=0 \\
& C_{y}=0.216 \mathrm{k}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.
*5-28. The three-hinged spandrel arch is subjected to the uniform load of $20 \mathrm{kN} / \mathrm{m}$. Determine the internal moment in the arch at point D.

Member $\boldsymbol{A B}$:

$$
\zeta+\sum M_{A}=0
$$

$$
B_{x}(5)+B_{y}(8)-160(4)=0
$$

Member $\boldsymbol{B C}$:
$\zeta+\sum M_{C}=0 ; \quad-B_{x}(5)+B_{y}(8)+160(4)=0$

Solving,

$$
B_{x}=128 \mathrm{kN}, \quad B_{y}=0
$$

Segment DB:

$$
\begin{array}{ll}
\varsigma+\sum M_{D}=0 ; & 128(2)-100(2.5)-M_{D}=0 \\
& M_{D}=6.00 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

5-29. The arch structure is subjected to the loading shown. Determine the horizontal and vertical components of reaction at A and D, and the tension in the $\operatorname{rod} A D$.
$\xrightarrow{+} \sum F_{x}=0 ; \quad-A_{x}+3 \mathrm{k}=0 ; \quad A_{x}=3 \mathrm{k}$
$\varsigma+\sum M_{A}=0 ; \quad-3 \mathrm{k}(3 \mathrm{ft})-10 \mathrm{k}(12 \mathrm{ft})+D_{y}(16 \mathrm{ft})=0$
$D_{y}=8.06 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad A_{y}-10 \mathrm{k}+8.06 \mathrm{k}=0$
$A_{y}=1.94 \mathrm{k}$
$\zeta+\sum M_{B}=0 ; \quad 8.06 \mathrm{k}(8 \mathrm{ft})-10 \mathrm{k}(4 \mathrm{ft})-T_{A D}(6 \mathrm{ft})=0$

$$
T_{A D}=4.08 \mathrm{k}
$$

Ans.

Ans.

Ans.

Ans.

